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Some Fundamentals

A large language model (aka LLM)

• Is Large in parameters size (usually more than 1B parameters)

• Operates on “language”



Some Fundamentals

What is ”language” for a model?

First, we need a way to chunk the language into units for the model to 
understand and predict
- Split by letter, word, sentence, paragraphs?

Letter: The vocabulary is simple - just 26 letters (at least for English), but 
each letter contains almost no semantic information!

Word: The vocabulary is close to human-level – around 10k, but what if 
there are rare words? (like mis-spelling or ”chillax”)



Some Fundamentals

What is ”language” for a model?

(Current) Solution: we split a language into “subwords”

Subwords contain both letters and words, or part of the words.
=> Can represent all kinds of “words”, and contain sufficient semantic 
meaning.



Some Fundamentals

Challenge: deciding on the vocabulary is difficult: What subwords should we 
include in the vocabulary?

Byte-Pair Encoding (BPE) is a method for balancing the vocab size and the 
semantic richness.

Rough idea: 
- first split the language into the smallest units (e.g., letters)
- then merge the letters into most frequently-appeared subwords
- Do this until a desired vocabulary size is reached.



Some Fundamentals

E.g., to build a vocabulary for 

"hug", "pug", "pun", "bun", "hugs”

First split them into letters
("h" "u" "g", 10), ("p" "u" "g", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "u" "g" "s", 5)

Merge the most frequent pair of letters
("h" "ug", 10), ("p" "ug", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "ug" "s", 5)

Continue

("h" "ug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("h" "ug" "s", 5)
…

Reference: https://huggingface.co/learn/llm-course/en/chapter6/5
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LLM Inference

This process is called ”tokenization”. 

LLMs model the “token space” by predicting what should be the next token, given 
a set of tokens.

So, when you use a LLM by API

Language 
Input Tokenization

LLM 
receives

the tokens

LLM
Predicts the 
next tokens

Map all tokens
back to 

language

Recursively (or, “auto-regressively”)



LLM Inference

• Caveat: a language model DOES NOT predict just one single output 
token

• It predicts a DISTRIBUTION!

A probability is assigned to each token
In the vocabulary, summed to 1.

Tokens

Token Probabilities

Reference: Vaswani et. al., Attention Is All You Need



LLM Inference

How is the next token selected then?

It is sampled, with a few tricks to improve robustness.

Reference: https://platform.openai.com/docs/api-reference/responses/get



LLM Inference

Temperature (𝑇): 

where 𝑧! is the logit of 𝑦!. Higher T means the logits are more even => 
the probability distribution is more spread out.

Reference: https://platform.openai.com/docs/api-reference/responses/get



LLM Inference

Top 𝑝: sort all probabilities in descending order. Select only from tokens 
with cumulative probabilities up to 𝑝 (usually 𝑝 ≥ 0.9).

Top 𝑘: sort all probabilities in descending order. Select only from the 
top 𝑘 tokens with highest probabilities. (Not so popular now as top 𝑝
can usually handle the work better)

Reference: https://platform.openai.com/docs/api-reference/responses/get



LLM Inference

Note: sampling allows many tricks to be applied to LLMs for all kinds of 
interesting purposes.

Some examples
• Beam Search (next slide)
• Guided Decoding (in assignment)
• Horizontal Scaling of LLM Reasoning (discussed later)



LLM Inference

Beam search: Generating multiple 
candidate sequences at the same 
time and at each time, only keep the 
most possible next tokens among all 
candidates.

Reference: https://medium.com/@sulbha.jindal/llm-inferencing-strategies-review-of-greedy-search-and-beam-search-cfbdb96e021a



LLM Inference

A remaining question: how does a LLM know when to stop?

A specialized token (usually represented as <EOS> ) is artificially added 
into the vocabulary to train the LLM.

The loop breaks when a <EOS> token is sampled. The special token is 
not existent in the language space.



LLM Inference

In the same vein, special tokens are also used to handle conversations.

Take Qwen series of models for example, 
• A system message always starts with <|im_system|> and ends with 
<|im_end|>
• A user message starts with <|im_user|> and ends with <|im_end|>
• An assistant message starts with <|im_assistant|> and ends with 
<|im_end|>

Then, a conversation is just concatenating all message tokens



LLM Inference

Note: Special tokens are handy tools to make LLM perform various tasks 
(when trained well).

Common usage:
• <BOS>: start of a sequence
• <EOS>: stop of a sequence
• <PAD>: let the LLM skip this token (useful in training)

More advanced usage:
• <summarize>: make the LLM summarize the previous text
• <switch>: make the LLM perform subtasks during the generation
• …



Fast LLM Inference



Fast LLM Inference

KV-Cache
The heaviest part in LLM computation is to calculate “attention”, i.e., 
the relevance scores between different tokens in the input. 

The attention scores (𝑄𝐾"/√𝑑#), can be reused.

The attention weights 𝑠𝑜𝑓𝑡𝑚𝑎𝑥($%
!

&"
), can be easily computed with 

cached scores.

Reference: Vaswani et. al., Attention Is All You Need



Fast LLM Inference

Attention weights represented as 
a 2-D matrix

Note that only the lower 
triangular parts have values,

because only later tokens can 
attend to previous tokens.

Reference: https://medium.com/@AIExplainedML/how-does-the-attention-mechanism-in-gpt-models-work-5f489a59346b



Fast LLM Inference

KV Cache
In auto-regressive (AR) 
generation, we compute 
the attention of the new 
token against existing 
tokens 

Previous attention scores 
can be reused

Reference: https://medium.com/@joaolages/kv-caching-explained-276520203249



Fast LLM Inference

KV Cache
Time Complexity reduced 
from 𝑂(𝑛') to 𝑂(𝑛), 

where 𝑛 refers to the 
number of tokens so far

Reference: https://medium.com/@joaolages/kv-caching-explained-276520203249



Fast LLM Inference

KV Cache
Provided the memory can store all the KV-cache, the time taken to 
generate a new token grows in 𝑂 𝑛 .

Reference: https://medium.com/@joaolages/kv-caching-explained-276520203249



Fast LLM Inference

KV Cache

With KV Cache, the matrix computation is not very intensive to GPUs.

Problem: the next token can only be computed after the previous 
token is generated.

=> We say AR decoding is, in general, IO bound (i.e., time is mainly 
wasted in waiting).



Fast LLM Inference

Prefilling

When a LLM first receives a user’s prompt, there is no cached attention weight (i.e., 
no KV cache).

In this case, intensive computation is required to compute the attention matrix for 
all prompt tokens.

Thankfully, with GPU, the matrix computation can be done in parallel.

We say the prefilling stage is, in general, compute bound (i.e., time is mainly used 
for heavy computation).



Fast LLM Inference

LLM Generation

Prefilling AR Decoding

Applies to prompt tokens Applies to output tokens

Compute Bound IO Bound

Takes up lots of compute 
resource

Takes up relatively smaller compute resource

Faster Slower



Fast LLM Inference

Can we trade compute for IO during AR?

Yes! We can use a smaller and faster model to quickly draft a few tokens. 
And then let the LLM “prefill” these tokens all at once.

Reference: Leviathan et. al., Fast Inference from Transformers via Speculative Decoding



Fast LLM Inference

We can optimize the “draft model” to 
draft tokens more likely to be accepted. 
The technique is called speculative 
decoding (SD).

The draft model can also be integrated 
in the target model. DeepSeek
implemented this in V3, branded as 
multi token prediction (MTP).
Reference: 
Cai et. al., Medusa: Simple LLM Inference Acceleration Framework with Multiple Decoding Heads
DeepSeek AI, DeepSeek-V3 Technical Report
Wu et. al., TETRIS: Optimal Draft Token Selection for Batch Speculative Decoding
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Reasoning

Reference: https://chat.openai.com/



Reasoning

Text is a perfect tool for formulating reasoning:

That is what most essays, books, and papers are written for!



Reasoning

Two systems of thinking:

System 1: fast, intuitive, effortless
- Good for informational, pattern recognition, etc..

System 2: deliberate, analytic, effortful 
- Good for heavy thinking, arithmetic, planning, etc..

Reference: Daniel Kahneman, “Thinking, Fast and Slow”



Reasoning

The naïve, auto-regressive, next token generation is like System 1.

How to make LLM perform System 2 thinking?



Two Kinds of Reasoning

• Without training

• With training



Reasoning Without Training

LLMs have an “innate” ability to 
perform System 2 thinking.

Intuition: 
logical reasoning can be mimicked. 
Text already embodies logic.



Reasoning Without Training

Chain-of-Thought (CoT): give a few demonstrations of reasoning traces.  

Reference: Wei et. al., Chain-of-Thought Prompting Elicits Reasoning in Large Language Models



Reasoning Without Training

Or even simpler: just tell 
the LLM to do it!  

“Let’s think step by step”

Reference: Kojima et. al., Large Language Models are Zero-Shot Reasoners



Reasoning Without Training

Or you can make the “step by step” explicit by calling the LLM multiple 
times.

What is the cube of square root of 16? Think step by step.

I know that the square root of 16 is 4.

Continue your thoughts. If you have the answer, start with Answer:

Now I know the square root of 16 is 4. The cube of 4 is 64.

Continue your thoughts. If you have the answer, start with Answer:

Answer: 64



Reasoning Without Training

Mens et manus. (translated to “Mind and hand”)

- Motto of MIT



Reasoning Without Training

Thinking along is not meaningful, not must be combined with actions.
We can make the LLM think and interact with the external world.

Reference: https://llmagents-learning.org/slides/llm_agent_history.pdf



Reasoning Without Training

Who’s the wife of the current president of the US?

Let me see. To answer this, I need to first know who is the current president of the US.

Ok! Now, I need to search for the wife of Donald Jr. Trump.

Answer: Melania Trump.

Web Search Result: the current president of the US is Donald Jr. Trump.

Web Search Result: the wife of Donald Jr. Trump is Melania Trump.

Reference: Yao et. Al., ReAct: Synergizing Reasoning and Acting in Language Models



Reasoning Without Training

Other common reasoning processes are reflection and self-
consistency.



Reasoning Without Training

Reflection: Having a buddy to critique what you are doing

Reference: Shinn et. al., Reflextion: Language Agents with Verbal Reinforcement Learning

A “buddy” LLM



Reasoning Without Training

Self-consistency: think about something from different perspectives, 
and pick the majority decision. 

Reference: Wang et. al., Self-Consistency Improves Chain of Thought Reasoning in Language Models



Reasoning Without Training

Tree-of-Thought (ToT): a conversation-level version of beam search. 
Each time, the LLM generates multiple candidates and only keeps the 
most promising ones (evaluated by a separate “buddy” model).

Reference: Yao et. al., Tree of Thoughts: Deliberate Problem Solving with Large Language Models



Reasoning Without Training

Monte Carlo Tree Search (MCTS): similar to ToT but theoretically more 
robust.

MCTS balances search cost and search quality.

At each node, MCTS selects the next node that maximizes the Upper 
Confidence Bound (UCB) value for traversal.

Reference:
Wang et. al., Towards Self-Improvement of LLMs via MCTS: Leveraging Stepwise Knowledge with Curriculum Preference Learning
Xie et. al., Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning
Li etl. al., FastMCTS: A Simple Sampling Strategy for Data Synthesis



Reasoning Without Training

Monte Carlo Tree Search (MCTS): similar to ToT but theoretically more 
robust.

Reference: https://en.wikipedia.org/wiki/Monte_Carlo_tree_search



Reasoning Without Training

Deep Research: A production-
ready implementation of the 
aforementioned methods.

E.g., Interleaved thinking, and web 
browsing actions.

Reference: https://manus.im/share/brWKUSp51ItvVMBpcXNCZ1?replay=1



Two Kinds of Reasoning

• Without training

• With training



Trained Reasoning

The previously demonstrated reasoning rely on the LLM’s innate ability 
to reason.

For stronger reasoning, practice is required.



Trained Reasoning

LLMs can be trained to think harder.

How? Let the LLM do difficult math problems. Reward it for correct 
answers and punish it for wrong answers.

In the prompt, instruct the LLM to reason before answer.

Reference: DeepSeek-AI, DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning



Trained Reasoning

As the LLM is trained, the thinking process gets more and more
complex.

Reference: DeepSeek-AI, DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning



Trained Reasoning

And the performance gets better and better as well.

Reference: DeepSeek-AI, DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning



Trained Reasoning

Now, the thinking process can be trained. Can we also train the actions 
part (the “Manus”)?

Yes. Change the prompt and use a similar method to train the model.

Reference: Jin et. al., Search-R1: Training LLMs to Reason and Leverage Search Engines with Reinforcement Learning



Trained Reasoning

And it works.

Reference: Jin et. al., Search-R1: Training LLMs to Reason and Leverage Search Engines with Reinforcement Learning



Reasoning

Mathematically, what is reasoning for LLM?



Inference-time Scaling

Down to its core, all these reasoning capabilities emerge by making the 
LLM generate more tokens before finalizing the answer.

From a statistical point of view, the extra “reasoning” tokens shift the 
output distribution 𝑃(𝑌|𝑋), making it more “accurate”.

Reference: Snell et. al., Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters



Inference-time Scaling

A trade-off between time and space.

Inference-time scaling: longer time, but smaller model size.

Parameter scaling: relatively shorter time, but larger model size.

Reference: Snell et. al., Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters



Inference-time Scaling

Another problem with inference-time scaling: the growing context size.

Everytime new information is gathered or new thinking is generated, 
the context grows.



Inference-time Scaling

Potential Solutions:

1. Training-free: Break the task into sub-tasks and assign them to sub-
agents. Consolidate the context from time to time using external 
agents.

L Very tedious engineering work and probably does not provide 
satisfactory performance



Inference-time Scaling

Potential Solutions:

2. Trained: Dynamically compress the memory in 
the generation process and train it to enhance its 
consolidation ability.

More works need to be done for production-level 
reasoning tasks (e.g., deep research).

Reference: Zhou et. al., MEM1: Learning to Synergize Memory and Reasoning for Efficient Long-Horizon Agents



Inference-time Scaling

Efficiency: while models can improve problem solving with reasoning. 
The reasoning trace can be messy and redundant.

Imagine writing 10 pages long just to solve a linear equation!



Inference-time Scaling

Curbing overthinking:

Practical no-training methods:
• Prompt the model to be aware (“You must think for no more than 100 

words”)
• Force stop the generation (After 100 tokens, append a “You must 

output your answer now!” to the end of the output stream)

Reference: Sui et. al., Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models



Inference-time Scaling

Curbing overthinking:

Training-based methods:
• Gather high-quality reasoning traces and fine-tune the model

• Train the model to generate shorter reasoning by rewarding short 
traces and penalizing long traces

Reference: Sui et. al., Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models



Inference-time Scaling

Curbing overthinking in use

Reference: https://docs.anthropic.com/en/docs/build-with-claude/extended-thinking



Q & A



Quiz

1. Many LLM inference service providers (e.g., vLLM) offer the ability to 
make LLM generate “structured output”. How is it implemented?

Reference: https://docs.vllm.ai/en/latest/features/structured_outputs.html#online-serving-openai-api



Quiz

2. In the slides, we mentioned that an LLM can be trained to generated 
longer and longer reasoning content. Can you achieve this long 
reasoning trace without training the LLM?


