An Introduction to
LLM Inference and Reasoning

Speaker: Zijian Zhou

Table of Content

e Some Fundamentals

e LLM Inference

* Reasoning

Some Fundamentals

A large language model (aka LLM)

* |s Large in parameters size (usually more than 1B parameters)

e Operates on “language”

Some Fundamentals

What is “language” for a model?

First, we need a way to chunk the language into units for the model to
understand and predict

- Split by letter, word, sentence, paragraphs?

Letter: The vocabulary is simple - just 26 letters (at least for English), but
each letter contains almost no semantic information!

Word: The vocabulary is close to human-level — around 10k, but what if
there are rare words? (like mis-spelling or “chillax”)

Some Fundamentals

What is “language” for a model?

(Current) Solution: we split a language into “subwords”

Subwords contain both letters and words, or part of the words.

=> Can represent all kinds of “words”, and contain sufficient semantic
meaning.

Some Fundamentals

Challenge: deciding on the vocabulary is difficult: What subwords should we
include in the vocabulary?

Byte-Pair Encoding (BPE) is a method for balancing the vocab size and the
semantic richness.

Rough idea:

- first split the language into the smallest units (e.g., letters)

- then merge the letters into most frequently-appeared subwords
- Do this until a desired vocabulary size is reached.

Some Fundamentals

E.g., to build a vocabulary for
"hug", "pug", "pun”, "bun", "hugs”
First split them into letters
("h" "u" "g", 10), ("p" "u" "g", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "u" "g" "s", 5)
Merge the most frequent pair of letters
("h" "ug", 10), ("p" "ug", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "ug" "s", 5)
Continue

("h" "ug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("h" "ug" "s", 5)

Reference: https://huggingface.co/learn/lim-course/en/chapter6/5

Table of Content

e Some Fundamentals

e LLM Inference

* Reasoning

LLM Inference

This process is called “tokenization”.

LLMs model the “token space” by predicting what should be the next token, given
a set of tokens.

So, when you use a LLM by API

Language - .
SUeb Tokenization receives Predicts the
Input
the tokens

next tokens
\ /

Recursively (or, “auto-regressively”)

Map all tokens

back to
language

LLM Inference

e Caveat: a language model DOES NOT predict just one single output
token

QOutput Probability

Token Probabilities 4" 'iner’:t%OKen:']

Softmax

A

Linear

A

* It predicts a DISTRIBUTION! (oaca.

Block 1

Add & Norm ‘€
———

Feed
Forward
A

A probability is assigned to each token

Add & Norm <€

1
Masked

In the vocabulary, summed to 1.
£ 19

Positional

P(Y | X) HP | yes, X). =

‘ Embedding

To kenS 4’[Input (;'Jrompt)]

Reference: Vaswani et. al., Attention Is All You Need

LLM Inference

How is the next token selected then?

It is sampled, with a few tricks to improve robustness.

temperature numberornull Optional Defaults to 1
What sampling temperature to use, between O and 2. Higher values like 0.8 will make the output
more random, while lower values like 0.2 will make it more focused and deterministic. We generally

recommend altering thisor top_p but not both.

top_p numberornull Optional Defaults to1
An alternative to sampling with temperature, called nucleus sampling, where the model considers
the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the

top 10% probability mass are considered.

We generally recommend altering this or temperature but notboth.

Reference: https://platform.openai.com/docs/api-reference/responses/get

LLM Inference

Temperature (T):

P(y; | y<i, X) = F (softmax(%))

where z; is the logit of y;. Higher T means the logits are more even =>
the probability distribution is more spread out.

Reference: https://platform.openai.com/docs/api-reference/responses/get

LLM Inference

Top p: sort all probabilities in descending order. Select only from tokens
with cumulative probabilities up to p (usually p = 0.9).

Top k: sort all probabilities in descending order. Select only from the
top k tokens with highest probabilities. (Not so popular now as top p
can usually handle the work better)

Reference: https://platform.openai.com/docs/api-reference/responses/get

LLM Inference

Note: sampling allows many tricks to be applied to LLMs for all kinds of
Interesting purposes.

Some examples

 Beam Search (next slide)

» Guided Decoding (in assignment)

* Horizontal Scaling of LLM Reasoning (discussed later)

LLM Inference

Beam Search Process

Beam search: Generating multiple
candidate sequences at the same
time and at each time, only keep the
most possible next tokens among all
candidates.

“The dog ran..."

"The cat sat..."
0.95 x 0.92 x

length_penalty(1.0) length_penalty(1.0)

Reference: https://medium.com/@sulbha.jindal/lim-inferencing-strategies-review-of-greedy-search-and-beam-search-cfbdb96e021a

LLM Inference

A remaining question: how does a LLM know when to stop?

A specialized token (usually represented as <EOS>) is artificially added
into the vocabulary to train the LLM.

The loop breaks when a <EOS> token is sampled. The special token is
not existent in the language space.

LLM Inference

In the same vein, special tokens are also used to handle conversations.

Take Qwen series of models for example,

* A system message always starts with <|im_system|> and ends with
<|im_end|>

* A user message starts with < |im user|> and ends with <|im _end|>

* An assistant message starts with <|im_assistant|> and ends with
<|im_end|>

Then, a conversation is just concatenating all message tokens

LLM Inference

Note: Special tokens are handy tools to make LLM perform various tasks
(when trained well).

Common usage:

e <BOS>: start of a sequence

* <EOS>: stop of a sequence

* <PAD>: let the LLM skip this token (useful in training)

More advanced usage:
e <summarize>: make the LLM summarize the previous text

e <switch>: make the LLM perform subtasks during the generation

Fast LLM Inference

Fast LLM Inference

KV-Cache

The heaviest part in LLM computation is to calculate “attention”, i.e.,
the relevance scores between different tokens in the input.

QK"
Vi

The attention scores (QKT /v/d},), can be reused.

Attention(Q, K, V) = softmax(1%

The attention weights Softmax(\/_) can be easily computed with
cached scores.

Reference: Vaswani et. al., Attention Is All You Need

Fast LLM Inference

father-

Attention weights represented as wanted:

nothing-

a 2-D matrix . 1
do-

with- . 0.24

0.32

Note that only the lower her “u
. and-
triangular parts have values, . ml >
put-
her- .
because only later tokens can up 0.08
attend to previous tokens. d t_f"“ 1
adoption-
<q>' e : : : -0. 00
g@i@i@*‘%@ ® & & fb‘i\\o@éQ& SORN ‘\Oibboq'@ia

Reference: https://medium.com/@AIExplainedML/how-does-the-attention-mechanism-in-gpt-models-work-5f489a59346b

Fast LLM Inference

KV Cache

Q KT QK" Y, Attention
In autO‘regreSSive (AR) . E Value Token 1 ‘ ‘ Token 1
generation, we compute &F ok] i]
the attention of the new
. . . (1, emb_size) (emb_size, 1) (11 (1, emb_size) (1, emb_size)
token against existing =~
Q KT QK" \Y; Attention
to ke n S 5 Value Token 1 ‘ ‘ Token 1
Previous attention scores o emb s (embsive 1) o b 1emb s

D Values that will be masked D Values that will be taken from cache

can be reused

Reference: https://medium.com/@joaolages/kv-caching-explained-276520203249

Fast LLM Inference

KV Cache

Step 1 Q KT QKT Y, Attention
Time Complexity reduced - aeroent | [Toent
2 3 _ _
from O(n“) to O (n), &F "5 X
(1, emb_size) (emb_size, 1) 1,1 (1, emb_size) (1, emb_size)
Q KT QK" \Y; Attention

Value Token 1 ‘ ‘ Token 1
where n refers to the s .

number of tokens so far

| uaxo) Aoy

(1, emb_size) (emb_size, 1) (1.1 (1, emb_size) (1, emb_size)

D Values that will be masked D Values that will be taken from cache

Reference: https://medium.com/@joaolages/kv-caching-explained-276520203249

Fast LLM Inference

KV Cache
Provided the memory can store all the KV-cache, the time taken to
generate a new token grows in O(n).

Reference: https://medium.com/@joaolages/kv-caching-explained-276520203249

Fast LLM Inference

KV Cache

With KV Cache, the matrix computation is not very intensive to GPUs.

Problem: the next token can only be computed after the previous
token is generated.

=> We say AR decoding is, in general, 10 bound (i.e., time is mainly
wasted in waiting).

Fast LLM Inference

Prefilling

When a LLM first receives a user’s prompt, there is no cached attention weight (i.e.,
no KV cache).

In this case, intensive computation is required to compute the attention matrix for
all prompt tokens.

Thankfully, with GPU, the matrix computation can be done in parallel.

We say the prefilling stage is, in general, compute bound (i.e., time is mainly used
for heavy computation).

Fast LLM Inference

LLM Generation

Prefilling AR Decoding

Applies to prompt tokens Applies to output tokens
Compute Bound |0 Bound
Takes up lots of compute Takes up relatively smaller compute resource
resource

Faster Slower

Fast LLM Inference

Can we trade compute for IO during AR?

Yes! We can use a smaller and faster model to quickly draft a few tokens.
And then let the LLM “prefill” these tokens all at once.

[START] japan ' s benchmark bend n

I

[START] japan ' s benchmark nikkei

H — —i

[START] japan

In

benchmark nikkei

- — — -

[START] japan

In

benchmark nikkei

i i -

I - I - I - I =91

[START] japan ' s benchmark nikkeil

] i -

22 5

5

—_l HH

225
225

225

index rose

index rose

index rose

22 <6

— HH

226

bl HH

226 .

il HH

. 69 ; points

69 points , or 6 1

—_—

Reference: Leviathan et. al., Fast Inference from Transformers via Speculative Decoding

Fast LLM Inference

We can optimize the “draft model” to
draft tokens more likely to be accepted.
The technique is called speculative
decoding (SD). 100

80

Speedup on different model sizes

2.83x = w/o Medusa
B Medusa-1
mmm Medusa-2
2.83x
2.33x

120

Tokens per Second

The draft model can also be integrated
in the target model. DeepSeek

implemented this in V3, branded as I

multi token prediction (MTP). 0 Model size

13B

Reference:

Cai et. al., Medusa: Simple LLM Inference Acceleration Framework with Multiple Decoding Heads
DeepSeek Al, DeepSeek-V3 Technical Report

Wu et. al., TETRIS: Optimal Draft Token Selection for Batch Speculative Decoding

Table of Content

e Some Fundamentals

e LLM Inference

* Reasoning

Reasoning

define reasoning ability

Reasoning ability is the mental capacity to:

1. Process information Jlogically |- understand facts or premises and see how they fit together.

2. |Draw jvalid inferences — move from what is known to what must (or is likely to) be true.

3. Solve problems and mak{ decisions -{ generate, evaluate, and choose among solutions.

4.| Adapt thinking to new contexts — transfer what's been learned to unfamiliar situations, spot

patterns, and revise conclusions when presented with new evidence.

In short, it's the cognitive toolkit that lets us move beyond raw data to coherent understanding, judgment,

and action.

Q6P L& OV

Reference: https://chat.openai.com/

Reasoning

Text is a perfect tool for formulating reasoning:

That is what most essays, books, and papers are written for!

Reasoning

Two systems of thinking: THINKIN G,

FAST .. S LOW

System 1: fast, intuitive, effortless = _
- Good for informational, pattern recognition, etc..

System 2: deliberate, analytic, effortful

- Good for heavy thinking, arithmetic, planning, etc..

Reference: Daniel Kahneman, “Thinking, Fast and Slow”

Reasoning

The naive, auto-regressive, next token generation is like System 1.

How to make LLM perform System 2 thinking?

Two Kinds of Reasoning

* Without training

e With training

Reasoning Without Training

The MacLaurin series:

LLMs have an “innate” ability to X) g P
.y . S‘”‘Z(znﬂ)!x i TR T
perform System 2 thinking.
< (=" ,, 2 Xt
cosx:nzo((zT)!x =1_2_!+4_!_...
IntUition: ezzg%=1+z+;_2!+§+...
logical reasoning can be mimicked. swsitues = ivin thelast series:
. .] ot — ()" _ i (ix)*> (ix)?
Text already embodies logic. 2 TR
=1+tx—2—2'—i);—3!+§+15—5'

x2)C4 . x3 XS
=1-T-+ 4 ti

20 4! 3! 5!

=cosx+isinx

X— oy + = —

Reasoning Without Training

Chain-of-Thought (CoT): give a few demonstrations of reasoning traces.

Standard Prompting Chain-of-Thought Prompting
Model Input Model Input
Q: Roger has 5 tennis balls. He buys 2 more cans of Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now? tennis balls does he have now?
A: The answer is 11. A: Roger started with 5 balls. 2 cans of 3 tennis balls

each is 6 tennis balls. 5 + 6 = 11. The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples Q: The cafeteria had 23 apples. If they used 20 to
do they have? make lunch and bought 6 more, how many apples
do they have?

Model Output Model Output

. ; A: The cafeteria had 23 apples originally. They used
A: Th 27.
e answeris 27. 3§ 20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 =9. The
answer is 9. /

Reference: Wei et. al., Chain-of-Thought Prompting Elicits Reasoning in Large Language Models

Reasoning Without Training

Or even simpler: just tell
the LLM to do it!

“Let’s think step by step”

(b) Few-shot-CoT

ﬁRoger has 5 tennis balls. He buys 2 more cans of teﬁ
balls. Each can has 3 tennis balls. How many tennis balls does
he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6
tennis balls. 5 + 6 = 11. The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A:

(Output) The juggler can juggle 16 balls. Half of the balls are golf

balls. So there are 16 / 2 = 8 golf balls. Half of the golf balls are
We. So there are 8/ 2 = 4 blue golf balls. The answer is 4. //

(d) Zero-shot-CoT (Ours)

ﬁ): A juggler can juggle 16 balls. Half of the balls are golf baIIs,\
and half of the golf balls are blue. How many blue golf balls are
there?

A: Let’s think step by step.

(Output) There are 16 balls in total. Half of the balls are golf
balls. That means that there are 8 golf balls. Half of the golf balls
Qre blue. That means that there are 4 blue golf balls. v /

Reference: Kojima et. al., Large Language Models are Zero-Shot Reasoners

Reasoning Without Training

Or you can make the “step by step” explicit by calling the LLM multiple
times.

[What is the cube of square root of 16? Think step by step. 8}

Q
[o°] | know that the square root of 16 is 4.]

[Continue your thoughts. If you have the answer, start with Answer: 8]

[20 Now | know the square root of 16 is 4. The cube of 4 is 64.]

[Continue your thoughts. If you have the answer, start with Answer: 8]

Q
[20 Answer: 64]

Reasoning Without Training

Mens et manus. (translated to “Mind and hand”)

- Motto of MIT

Reasoning Without Training

Thinking along is not meaningful, not must be combined with actions.
We can make the LLM think and interact with the external world.

s (@O @

Observation

Reference: https://Iimagents-learning.org/slides/llm_agent_history.pdf

Reasoning Without Training

[Who's the wife of the current president of the US?

[efg Let me see. To answer this, | need to first know who is the current president of the US.]
% Web Search Result: the current president of the US is Donald Jr. Trump.]
: ng Ok! Now, | need to search for the wife of Donald Jr. Trump.]
% Web Search Result: the wife of Donald Jr. Trump is Melania Trump.]
: g?g Answer: Melania Trump.]

Reference: Yao et. Al., ReAct: Synergizing Reasoning and Acting in Language Models

Reasoning Without Training

Other common reasoning processes are reflection and self-
consistency.

Reasoning Without Training

Reflection: Having a buddy to critique what you are doing
[1. pecision making |

You are in the middle of a room

(a) Task [...] Task: clean some pan and put
it in countertop.
. J
l [...]
(b) Action:take panl from stoveburnerl

Trajectory | Obs:Nothing happens. [...]
Action:clean panl with sinkbasinl
Obs:Nothing happens. [...]

(c)
‘(Evaluation Rule/L@ Hegrlstlc:
> Hallucination.

\

A ubuddy” LLM L (internal /I external)

\
[...] tried to pick up the pan in
(d) stoveburner 1 [...] but the pan

Reflection | yas not in stoveburner 1. [...]

l [...] Action: take pan 1 from
(e) Next stoveburner 2
Trajectory [...] Obs: You put the pan 1 in

countertop 1.

Reference: Shinn et. al., Reflextion: Language Agents with Verbal Reinforcement Learning

Reasoning Without Training

Self-consistency: think about something from different perspectives,
and pick the majority decision.

Sample a diverse set of Marginalize out reasoning paths
reasoning paths to aggregate final answers

e e e e e e s s = |
She has 16 - 3 - 4 =9 eggs)
left. So she makes $2*9 = | The answer is $18.
$18 per day. | g \

| N\ \
This means she she sells the \

remainder for $2 * (16 - 4 - 3) The answer is $26. Y
= $26 per day.

Language
model

! J The answer is $18.]

She eats 3 for breakfast, so |)
she has 16 - 3 = 13 left. Then |

she bakes muffins, so she I The answer is $18.
has 13 - 4 = 9 eggs left. So

she has 9 eggs * $2=$18. |

Reference: Wang et. al., Self-Consistency Improves Chain of Thought Reasoning in Language Models

Reasoning Without Training

Tree-of-Thought (ToT): a conversation-level version of beam search.
Each time, the LLM generates multiple candidates and only keeps the
most promising ones (evaluated by a separate “buddy” model).

Input : thought :

Y Majority vote

(a) Input-Output (c) Chain of Thought (c) Self Consistency
Prompting (I0) Prompting (CoT) with CoT (CoT-SC)

------ 0

(d) Tree of Thoughts (ToT)

Reference: Yao et. al., Tree of Thoughts: Deliberate Problem Solving with Large Language Models

Reasoning Without Training

Monte Carlo Tree Search (MCTS): similar to ToT but theoretically more
robust.

MCTS balances search cost and search quality.

At each node, MICTS selects the next node that maximizes the Upper
Confidence Bound (UCB) value for traversal.

Reference:
Wang et. al., Towards Self-Improvement of LLMs via MCTS: Leveraging Stepwise Knowledge with Curriculum Preference Learning

Xie et. al., Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning
Li etl. al., FastMCTS: A Simple Sampling Strategy for Data Synthesis

Reasoning Without Training

Monte Carlo Tree Search (MCTS): similar to ToT but theoretically more
robust.

Reference: https://en.wikipedia.org/wiki/Monte Carlo_tree_search

Reasoning Without Training

& manus 7-Day Japan ltinerary with Proposal Ideas - @9

L]
D e e p Re S e a rC h : A p ro d u Ct I O n - I'll continue researching Japan travel information using alternative sources. Let me gather

comprehensive information about historical sites, cultural experiences, and hidden gems in Tokyo,

ready implementation of the

Research cities and attractions matching traveler's interests »~
L]
a fo re m e nt I O n e d m et h O d S Researching historical sites, cultural experiences, and hidden gems in Tokyo, Kyoto, and Nara for the April trip
L] itinerary.
Q| Searching Nara deer park Japan tourist attractions
2) Browsing https://www.japan.travel/en/destinations/kansai/nara/nara-park-and-around/

a) Scrolling down

E. g., Inte rl e aved t hinkin g, an d we b &) Searching Japan tea cerenony Zen meditation kendo cultural experiences

Researching historical sites, cultural experiences like tea ceremonies and Zen meditation, and hidden gems in

b rOWS i n g a Ct i O n S . Japan for the April trip itinerary.

2) Browsing https://wakjapan.com/

Researching historical sites, cultural experiences, and hidden gems in Japan for the April trip itinerary.
2) Scrolling down
2) Scrolling down

2) Scrolling down B

~ __yhistorical sites, cultural experiences like tea ceremonies and martial arts, and hidden gems in Japan

trip itinerary.

v/ Finalize and prepare travel documentation for delivery 8/8 A~

&) Manus task replay completed.
Reference: https://manus.im/share/brWKUSp51I1tvWMBpcXNCZ1?replay=1

Two Kinds of Reasoning

* Without training

* With training

Trained Reasoning

The previously demonstrated reasoning rely on the LLM’s innate ability
to reason.

For stronger reasoning, practice is required.

Trained Reasoning

LLMs can be trained to think harder.

How? Let the LLM do difficult math problems. Reward it for correct
answers and punish it for wrong answers.

In the prompt, instruct the LLM to reason before answer.

A conversation between User and Assistant. The user asks a question, and the Assistant solves it.
The assistant first thinks about the reasoning process in the mind and then provides the user
with the answer. The reasoning process and answer are enclosed within <think> </think> and
<answer> </answer> tags, respectively, i.e., <think> reasoning process here </think>

<answer> answer here </answer>. User: prompt. Assistant:

Reference: DeepSeek-Al, DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

Trained Reasoning

As the LLM is trained, the thinking process gets more and more
CO m p I eX o DeepSeek-R1-Zero average length per response during training

12000 A

10000 A

8000 1

6000 +

4000 +

Average length per response

2000 A

0 2000 4000 6000 8000
Steps

Reference: DeepSeek-Al, DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

Trained Reasoning

And the performance gets better and better as well.

DeepSeek-R1-Zero AIME accuracy during training

0.9

0.8 1

0.7 1

Accuracy
© °
6] (o))
1

o
H
1

o
W

—8— rl-zero-pass@1l

—8— rl-zero-cons@16
—== 01-0912-pass@1
—-== 01-0912-cons@64

©
[N

0 2000 4000 6000 8000

Ctanc

Reference: DeepSeek-Al, DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

Trained Reasoning

Now, the thinking process can be trained. Can we also train the actions
part (the “Manus”)?

Yes. Change the prompt and use a similar method to train the model.

Answer the given question. You must conduct reasoning inside <think>and </think>
first every time you get new information. After reasoning, if you find you lack some
knowledge, you can call a search engine by <search> query </search>, and it will
return the top searched results between <information> and </information>. You
can search as many times as you want. If you find no further external knowledge
needed, you can directly provide the answer inside <answer> and </answer> without
detailed illustrations. For example, <answer> xxx </answer>. Question: question.

Reference: Jin et. al., Search-R1: Training LLMs to Reason and Leverage Search Engines with Reinforcement Learning

Trained Reasoning

And it works.

Methods General QA Multi-Hop QA

NQ" TriviaQA* PopQA* HotpotQA" 2wiki* Musique* Bamboogle* Avg.

Qwen2.5-7b-Base/Instruct

Direct Inference 0.134 0.408 0.140 0.183 0.250 0.031 0.120 0.181
CoT 0.048 0.185 0.054 0.092 0.111 0.022 0.232 0.106
IRCoT 0.224 0.478 0.301 0.133 0.149 0.072 0.224 0.239
Search-ol 0.151 0.443 0.131 0.187 0.176 0.058 0.296 0.206
RAG 0.349 0.585 0.392 0.299 0.235 0.058 0.208 0.304
SFT 0.318 0.354 0.121 0.217 0.259 0.066 0.112 0.207
R1-base 0.297 0.539 0.202 0.242 0.273 0.083 0.296 0.276
R1-instruct 0.270 0.537 0.199 0.237 0.292 0.072 0.293 0.271
Search-R1-base 0.480 0.638 0.457 0.433 0.382 0.196 0.432 0.431
[Search-R1-instruct 0.393 0.610 0.397 0.370 0.414 0.146 0.368 0.385]

Reference: Jin et. al., Search-R1: Training LLMs to Reason and Leverage Search Engines with Reinforcement Learning

Reasoning

Mathematically, what is reasoning for LLM?

Inference-time Scaling

Down to its core, all these reasoning capabilities emerge by making the
LLM generate more tokens before finalizing the answer.

YlX HPy'L | Y<is)

From a statistical point of view, the extra “reasoning” tokens shift the
output distribution P(Y|X), making it more “accurate”.

Reference: Snell et. al., Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters

Inference-time Scaling

A trade-off between time and space.
Inference-time scaling: longer time, but smaller model size.

Parameter scaling: relatively shorter time, but larger model size.

Reference: Snell et. al., Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters

Inference-time Scaling

Another problem with inference-time scaling: the growing context size.

Everytime new information is gathered or new thinking is generated,
the ContEXt grOWS. REREREWPHRERSRE g O %

| /\ Manus's performance may decline with extremely long context. Start new session |

2, Scrolling down
EAEMRELCH (RFIACEO) HWERNSHETIHNXR
2) Scrolling down
EEMRECH (RFIACEO) WERNSPETIHNXR
2) Browsing https://www.guancha.cn/economy/2025_02_18_765477.shtml
EAEMRELCH (RFIACEO) WERNSHTETIHNXR
2) Scrolling down
EEMRECH (RFIACEO) NERNSFETIHZNXR
2] Creating file research/jensen_huang.md

Research Sam Altman's potential perspective

FHAARLLL- 8458 (OpenAl CEO) MESMSGPUMXA
2 Editing file todo.md

FHAMRLL- 8458 (OpenAl CEO) MESRHSGPUNXA
Q) Searching Lt 2458 OpenAI CEO GPU ZfHiX kit

AR LS -B1EE2 (OpenAl CEO) B EH5GPUIXR

Inference-time Scaling

Potential Solutions:

1. Training-free: Break the task into sub-tasks and assign them to sub-
agents. Consolidate the context from time to time using external
agents.

® Very tedious engineering work and probably does not provide
satisfactory performance

Inference-time Scaling

Potential Solutions:

2. Trained: Dynamically compress the memory in g
the generation process and train it to enhance its S N |

i . oy Existing Reasoning Agents
consolidation ability.
More works need to be done for production-level S MEM1 Agent
reasoning tasks (e.g., deep research). Total Tokens Generated

EStep1E Step 2 EStep3E Step 4 E Step 5 E

Reference: Zhou et. al., MEM1: Learning to Synergize Memory and Reasoning for Efficient Long-Horizon Agents

Inference-time Scaling

Efficiency: while models can improve problem solving with reasoning.
The reasoning trace can be messy and redundant.

Imagine writing 10 pages long just to solve a linear equation!

Inference-time Scaling

Curbing overthinking:

Practical no-training methods:

* Prompt the model to be aware (“You must think for no more than 100
words”)

* Force stop the generation (After 100 tokens, append a “You must
output your answer now!” to the end of the output stream)

Reference: Sui et. al., Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models

Inference-time Scaling

Curbing overthinking:

Training-based methods:

e Gather high-quality reasoning traces and fine-tune the model

* Train the model to generate shorter reasoning by rewarding short
traces and penalizing long traces

Reference: Sui et. al., Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models

Inference-time Scaling

CU rbing Overthinking in Use https://api.anthropic.com/vl/messages \

--header "x-api-key: $ANTHROPIC_API_KEY" \
--header "anthropic-version: 2023-06-01" \
--header "content-type: application/json" \
--data \

"model": "claude-sonnet-4-20250514",
"max_tokens": 16000,
"thinking": {
"type": "enabled",
"budget_tokens": 10000
b
"messages": [

{

"role": "user",

"content": "Are there an infinite number of prime numbers such that n m

Reference: https://docs.anthropic.com/en/docs/build-with-claude/extended-thinking

Q&A

Quiz

1. Many LLM inference service providers (e.g., vLLM) offer the ability to
make LLM generate “structured output”. How is it implemented?

Code v

from openai import OpenAI |_D
client = OpenAI(

base_url="http://localhost:8000/v1",

api_key="-",
)

model = client.models.list().data[@].id

completion = client.chat.completions.create(
model=model,

messages=|

{"role": "user", "content": "Classify this sentiment: vLLM is wonderful!"}
]
extra_body={"guided_choice": ["positive", "negative"]}

)

print(completion.choices[0].message.content)

Reference: https://docs.vlim.ai/en/latest/features/structured _outputs.html#tonline-serving-openai-api

Quiz

2. In the slides, we mentioned that an LLM can be trained to generated
longer and longer reasoning content. Can you achieve this long
reasoning trace without training the LLM?

