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Physics Informed Learning?

Computational Science is an important tool that we can use to
incorporate physical invariances into learning, but until recently it
was missing from mainstream ML.

“Computational Science can and Data
. It can explore the effects of thousands of scenarios for or in

lieu of actual experiment and be used to study events beyond the

reach of expanding the boundaries of experimental science”

~Tinsley Oden, 2013 Theory

To make further progress in ML it is crucial that we incorporate
computational science into learning. Hardware
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Who has digested “the bitter lesson” of Al/ML?

"general methods that leverage computation are ultimately the most effective, and by a large margin."

"Most Al research has been conducted as if the computation available to the agent were constant (in
which case leveraging human knowledge would be one of the only ways to improve performance)"

"Seeking an improvement that makes a difference in the shorter term, researchers seek to leverage their
human knowledge of the domain"

"only thing that matters in the long run is the leveraging of computation."

"These two need not run counter to each other, but in practice they tend to.
« Time spent on one is time not spent on the other.
« There are psychological commitments to investment in one approach or the other.

* And the human-knowledge approach tends to complicate methods in ways that make them less
suited to taking advantage of general methods leveraging computation.”

“building in how we think we think does not work in the long run ...”

E.g., computer chess, computer Go, speech recognition, computer vision, time-series forecasting, ...
science!



Questions?

» QO0: What is a “Foundation Model”?

» Q1: Can we hope to train a “Foundation Model” for SciML?

» Q2: Would incorporating physical knowledge help? If so, how to do it?
» Q3: Foundations?

» Q4: Implementations?

» Q6: Applications?

» Q6: Looking forward?
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What is a foundation model?

General-purpose technologies that can support a diverse range of use cases.

Built using well-established techniques from ML.:
NNs, self-supervised learning, transfer learning, etc.

New paradigm in ML:
general-purpose models are “reusable infrastructure,” instead of bespoke/one-off solutions
building foundation models is highly resource-intensive (100M - 1B USD, people, data, compute)
adapting a foundation model for a specific use case or using it directly is much less expensive.

Term was created/popularized by Stanford Institute for Human-Centered Atrtificial Intelligence
(HAI) Center for Research on Foundation Models (CRFM):

Bommasani et al. "On the Opportunities and Risks of Foundation Models" arXiv:2108.07258.



What is a foundation model?

Other possible names:
large language model - too narrow, given the focus is not only language
self-supervised model - too specific, to the training objective
pretrained model - suggests the important action happened after pretraining
foundational model - suggests the model provides fundamental principles

Foundation model:

emphasize the intended function (i.e., amenability to subsequent further development) rather
than modality, architecture, or implementation.

Early examples were language models (LMs) like Google's BERT and OpenAl's GPT-n series.
More recently, developed across a range of modalities:

images; music; time series; robotic control; etc. (?)

Lots of areas of science: astronomy, radiology, climate, genomics, coding, mathematics, etc. (?)
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How to view Scientific Machine Learning

Vertical vs Horizontal integration

If a vertical integration occurs when a company acquires a company or asset at a different
part of the supply chain, horizontal integration occurs when a company consolidates with the
acquisition of a company or asset at the same points of the supply chain.
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How to view Scientific Machine Learning

ML is a "horizontal”:
» Provides a standard applicable across multiple cross-areas
» Like the iphone, or roads/railroads, or energy infrastructure, or HPC

Domain Sciences are "verticals”:
« They own domain acquisition, insight, analysis, interpretation, etc.
* You need to be a domain expert to push state of the art

High-profile successes of SciML have taken place in industry:
« "Horizontal" companies that provide tech platforms and have lots of ML expertise
* Not "vertical" companies that know one science domain and use ML for that one goal

What do business leaders care about?
* No CEO cares about ML; they care about money

* Winners are those who invest heavily in this "means to an end" ML infrastructure
10



What might be possible with a meaningfully Scientific FM?

Train on data from:
Atmosphere: Climate and Weather processes
Land: Water and Ecosystem processes
Subsurface: Heterogeneous flows and seismicity
Language models: e.g., if you want to learn 1/f noise

Transfer learn on data from:
Astronomy: to discover habitable exoplanets
Materials Science: to learn physics across scales in an end-to-end way
Chemistry: to learn interatomic potentials for MD simulation
Fire/Floods/Etc.: to learn distributions of extreme events well enough to create insurance markets
Nuclear Physics: to learn classified data from public data

How is this even possible? My data are special/unique?
No; NOT so.

You are NOT so unique/special: ML algorithms predict movies you watch better than you do



Just call ChatGPT? Or apply the M.O. of ML to Science?

Option 1:
. Ask ChatGPT (OI’ whatever |_|_|\/|)’ post BERKELEY LAB COMPUTING SCIENCES

f’."\ U.S. DEPARTMENT OF

\8/ENERGY

LAWRENCE BERKELEY NATIONAL LABORATORY

fine-tuning, to hypothesize new drugs, or '

what comes after the Top quark, or ... ows & venss | NN B

Can Al Foundation Models Drive Accelerated Scientific Discovery?

Option 2: The M.O. of ML: Can Al Foundation
. Use ChatGPT embeddings in a model Models Drive Accelerated Scientific
for some other scientific objective. Discovery?

NOVEMBER 10, 2023

Opt|0n 3: By Carol Pott
Contact: cscomms@Ibl.gov
- Understand the methodology of ML* i

Pre-trained artificial intelligence (Al) foundation models have generated a lot of excitement recently,

. Apply th at methOdOIOgy to SCIGntIfIC data most notably with Large Language Models (LLMs) such as GPT4 and ChatGPT. The term "foundation
. . . model" refers to a class of Al models that undergo extensive training with vast and diverse datasets,
® M u |t|'m0d al SC|ent|f|C data cou Id be teXt setting the stage for their application across a wide array of tasks. Rather than being trained for a
. . . single purpose, these models are designed to understand complex relationships within their training
® It COUId be Si mUIat|On, eXpe r ment, etC data. These models can adapt to various new objectives through fine-tuning with smaller, task-
. . . specific datasets. Once fine-tuned, these models can accelerate progress and discovery by rapidly
® I NnCco rporate S patl O'te m pO I’al N d u Ct|Ve analyzing complex data, making predictions, and providing valuable insights to researchers. The

magic lies in scaling the model, data, and computation in just the right way.

biases into architecture and compute
- Develop foundations for SciML

i *Scale data size, model size, and compute so none of them saturate, then transfer learn.



The M.O. of ML: Foundation models for SciML?

/ Create and pre-train on diverse PDE systems Foundation Models for SciML \
Vary/Sample all inputs (PDE coefficients, source functions, ...) Solve multiple systems using the same pre-trained
Include multiple differential operators, predict PDE solution model, outperforming training from scratch

V.-KVu+v-Vu+ ..=f

Neural
—_ —_—

Operator

Foundation
Model

1 "Towards Foundation Models for Scientific Machine Learning: Characterizing Scaling and Transfer Behavior," Subramanian, Harrington, Keutzer, Bhimji, Morozov, Mahoney,
i and Gholami, arXiv:2306.00258, NeurlPS23.



The M.O. of ML: Physics control knobs for changing solutions

Source Sampling
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The M.O. of ML: OOD transfer behavior
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"Towards Foundation Models for Scientific Machine Learning: Characterizing Scaling and Transfer Behavior," Subramanian, Harrington, Keutzer, Bhimji, Morozov, Mahoney, 1i5
and Gholami, arXiv:2306.00258, NeurlPS23. '
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Combining domain-driven and data-driven models?

Characterizing possible failure modes
in physics-informed neural networks

Aditi S. Krishnapriyan*'2, Amir Gholami*-2,
Shandian Zhe®, Robert M. Kirby*, Michael W. Mahoney?>*
Science | DOI:10.1145/3524015 S (e 'Lawrence Berkeley National Laboratory, 2University of California, Berkeley,
3University of Utah, “International Computer Science Institute

Neu ral Networks Learn {aditikl, amirgh, mahoneymw}@berkeley.edu, {zhe, kirby}@cs.utah.edu
to Speed Up Simulations

Physics-informed machine learning is gaining attention, Abstract
but suffers from trainingissues.

Recent work in scientific machine learning has developed so-called physics-

HYSICAL SCIENTISTS AND en-
gineering research and de-
velopment (R&D) teams are
embracing neural networks
in attempts to accelerate

their simulations. From quantum me-
chanics to the prediction of blood flow
in the body, numerous teams have re-
ported on speedups in simulation by
swapping conventional finite-element
solvers for models trained on various
combinations of experimental and syn-
thetic data.
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Foundational Methods for Foundation Models

lllustrative recent proof-of-principle directions:

. SuperBench: A Super-Resolution Benchmark for SciML
. Traditional vs Modern ML UQ: Over- vs under-parameterized models
. ContinuousNet: “numerical” convergence tests
ProbConserve: a posteriori correction for conservation constraints
. Weight Diagnostics: Weight\Watcher analysis and HTSR
. Time Series: LEM, ConvLEM, Chronos

NeurDE: long-term prediction of nonlinear conservation laws™

*ML horizontal: kinetic theory formulation to use ML to couple between different scales



Foundational methods: SuperBench

(a)

uperBench

A Super-Resolution Benchmark Dataset for SciML

1. A super-resolution benchmark for SciML

2. High-resolution fluid flow, cosmology, and weather
datasets with dimensions up to 2048 x 2048

3. Pixel-level difference, human-level perception
domain-motivated error metrics

4. Extensible framework

(b)

Up-sampling
SR: f71() -

Down-sampling

A

Degradation: f(-)

_______________________________________________________________________________________________________________________________________________________________________________________

+ "SuperBench: A Super-Resolution Benchmark Dataset for Scientific Machine Learning," Ren, Erichson, Subramanian, San, Lukic, and Mahoney, arXiv:2306.14070



Foundational methods: Traditional vs Modern ML UQ

Traditional UQ versus Modern UQ in overparameterized vs underparameterized models
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Figure 3: Bagged random feature classifiers. Figure 4: Random forest classifiers. Blacked dashed

Blacked dashed line represents the interpolation
threshold. Across all tasks, DER and EIR are maxi-
mized at this point, and then decrease thereafter.

line represents the interpolation threshold. Across all
tasks, DER and EIR are maximized at this point, and
then remain constant thereafter.
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Figure 5: Large scale studies of deep ensembles on ResNet18/CIFAR-10. We plot the DER and EIR across a
range of hyper-parameters, for two training settings: one with learning rate decay, and one without. The black
dashed line indicates the interpolation threshold, i.e., the curve below which individual models achieve exactly
zero training error. Observe that interpolating ensembles attain distinctly lower EIR than non-interpolating
ensembles, and correspondingly have low DER (< 1), compared to non-interpolating ensembles with high
DER (> 1).

Er "The Interpolating Information Criterion for Overparameterized Models," Hodgkinson, van der Heide, Salomone, Roosta, and Mahoney, arXiv:2307.07785
1 "When are ensembles really effective?,” Theisen, Kim, Yang, Hodgkinson, and Mahoney, arXiv:2305.12313, NeurlPS23
i "Monotonicity and Double Descent in Uncertainty Estimation with Gaussian Processes," Hodgkinson, van der Heide, Roosta, and Mahoney, arXiv:2210.07612, ICML23



Foundational methods : ContinuousNet

—  Euler-Net: 7, + hN(z0;0) : — Euler-Net: z,, + 0.01N (xq;0)
- -~ Baseline numerical Euler: x, + hF'(zp) === Baseline numerical Euler: 5 + 0.01F (z,)

1. Convergence test based on numerical analysis :
theory i ” :
2. Verifies whether a model has learned an underlying { T ; 4O X
continuous dynamics e, T AR ER

(a) Euler-Net (b) Euler-Net convergence test (c) Evaluated h is 10% of the trained At

3. Good for super-resolution, iterative dynamics, etc. T e

--~ Baseline numerical RK4: x, + RKA[F(z,))

4. Applies to NNs, SINDy, etc. r 'W 7o,
” Zlf
5 5t = of \ \ / / \ \
& z \
h =025 h=At=05 . X \ & \‘
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; Evaluated h Tlme
(d) RK4-Net (e) RK4-Net convergence test (f) Evaluated h is 10% of the trained At

Figure 2: Illustration of our convergence test with different ODE-Nets. (a) Schematic of an ODE-Net

Euler-Net

RK4-Net

! "Learning continuous models for continuous physics," Krishnapriyan, Queiruga, Erichson, and Mahoney, arXiv:2202.08494, Comm Phys (2023)
' i "Continuous-in-Depth Neural Networks," Queiruga, Erichson, Taylor, and Mahoney, arXiv:2008.02389 !



One way to address failure modes: ProbConserve

1. Compute mean and variance estimates L SORCTANE | [ HadC-ANP | ProbConserv-ANE
2. Update model (with oblique projection,
. L] L] 3
depending on heteroscedasticity
structure)
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3. Good for sharp discontinuities « e ot
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(a) easy: Diffusion equation (k = 1) (b) medium: PME (k(u) = u3) (c) hard: Stefan (discont. k(u)) 0 T
Figure 1: Illustration of the “easy-to-hard” paradigm for PDEs, for the GPME family of conservation equa- 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3
tions: (a) “easy” parabolic smooth (diffusion equation) solutions, with constant parameter k(u) = k = 1; e
(b) “medium” degenerate parabolic PME solutions, with nonlinear monomial coefficient &(u) = u™, with pa- Shock pOSItIO n | True shock

rameter m = 3 here; and (c) “hard” hyperbolic-like (degenerate parabolic) sharp solutions (Stefan equation)
with nonlinear step-function coefficient k(u) = 1>+, where 1¢ is an indicator function for event £.

(b) Posterior of the shock position.

i "Learning Physical Models that Can Respect Conservation Laws," Hansen, Maddix, Alizadeh, Gupta, and Mahoney, arXiv:2302.11002, ICML23, Physica D (2024) !
i "Using Uncertainty Quantification to Characterize and Improve Out-of-Domain Learning for PDEs," Mouli, Maddix, Alizadeh, Gupta, Stuart, Mahoney, Wang, arXiv:2403.10642 !



Foundational methods : Weight Diagnostics

Use methods from disordered

systems theory, random Analyzing DNN Weight matrices with WeightWatcher
matri.x theory and statisticgl @ e
physics to diagnose practical

>3, Do Spectral analysis

U 2 v \>2. Take a weight matrix
> 4. Histogram of eigenvalues

problems in state-of-the art
neural networks

Random-like ESD p(A) Bulk+Spikes ESD p(A) Heavy Tailed ESD p(A)

MP fit oal =l MP fit 0.4/ Pemp(A)
PemplA) [N Pemp(A)

gl

* “Predicting trends in the quality of state-of-the-art neural \ @ W

networks without access to training or testing data,”
Martin, Peng, and Mahoney, arXiv:2002.06716 (2020)

e “Statistical Mechanics Methods for Discovering ‘ 3 ‘ \
Knowledge from Modern Production Quality Neural ] h | ] 4
Networks, Martin and Mahoney,” KDD (2019) ool ) 00l WLy ] ool e

Eigenvalues A of X = WTW Eigenvalues A of X = WTW Eigenvalues A of X = WTW

06{ | N 0.3

&

Spectral Density

o
N

| / \ 041 “‘ A 0.2
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* “Traditional and Heavy-Tailed Self Regularization in
Neural Network Models, Martin and Mahoney,” ICML .
(2019) y “=p Analyze one layer of pre-trained model
* “Heavy-Tailed Universality Predicts Trends in Test »Compa re multiple layers of pre-trained model
Accuracies for Very Large Pre-Trained Deep Neural
Networks,” Martin and Mahoney, SDM (2019) “=p Monitor NN properties as you train your own model

¢ “Implicit Self-Regularization in Deep Neural Networks:
Evidence from Random Matrix Theory and Implications
for Learning,” Martin and Mahoney, arXiv:1810.01075
(2018)

¢ (https://github.com/CalculatedContent/ww-trends-2020)



Foundational methods : Time Series

Published as a conference paper at ICLR 2022 Qutput + Future Augmentation Block

* Linear + Concat
¢ MLP + Concat

LONG EXPRESSIVE MEMORY FOR SEQUENCE

Output + Future Augmentation | Static + Historic Series Decoder

{ )
Block P * None !
MODELING e R i + MLP (MQCNN) 5
Static + Historic L 2 o trameC LEM Y
T. Konstantin Rusch Siddhartha Mishra N. Benjamin Erichson . S enesDecoder ______ ) ) o )
ETH Ziirich ETH Ziirich University of Pittsburgh Ly Static + Historic Series Encoder
trusch@ethz.ch smishra@ethz.ch erichson@pitt.edu ; Gt * CNN+MLP (MQCNN)
Stat%c + Historic * Patching + Linear
Series Encoder « Patching + MLP
Michael W. Mahoney
ICSI and UC Berkeley
mmahoney@stat.berkeley.edu

Time Series Tokenization Training Inference
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Historical Time Series
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Figure 1: High-level depiction of CHRONOs. (Left) The input time series is scaled and quantized to obtain a sequence

"Chronos: Learning the Language of Time Series," Ansari et al., arXiv:2403.07815 !
"Using Pre-trained LLMs for Multivariate Time Series Forecasting," Wolff, Yang, Torkkola, and Mahoney arXiv:2501.06386 :
"Long Expressive Memory for Sequence Modeling," Rusch, Mishra, Erichson, and Mahoney, arXiv:2110.04744, ICLR22 i



Foundational methods

NeurDE: Neural Discrete Equilibrium (t,m,v)f:;:i)ma'f:%(fW(UE)_fE)_) (@4 v-Va)f* =0 :—)ff<t+m,m,v>
* Applicable to nonlinear conservation laws e T
e Use kinetic theory to “lift” system into higher-dim T | Srnig vl | !
o Swaps nonlocal nonlinearities for linear system with a single N (w?ym)) —f'* pispite T — R EI—Jt“”A”
nonlinear function e s et } (moments
o Tracks single particle distributions by adding velocities (Mgl 4
e Simple NNs into the nonlinear function (Fig. 2a) " e s
o Predicts equilibrium particle distribution at a given time and Fig 1: Relation between lifting, splitting, and use of NeurDE
position with two five-layer MLPs i -

e Linear system naturally facilitates splitting temporal
evolution
e NeurDE learns underlying physics and can predict

supersonic shocks (Fig. 2)

o We train on early times for a single trajectory (b)
o We predict equilibrium features not present in training data (c&d)

175

150

1.25

1.00

0.75

+0.50

NeurDE spans micro-to-macro scales 02
* |t calculates microscopic densities, but .
UItlmately predlcts macroscoplc flows Fig 2: llustration of NeurDE and supersonic predictions

"Neural equilibria for long-term prediction of nonlinear conservation laws," Benitez, Guo, Hegazy, Dokmanic, Mahoney, and de Hoop arXiv:2501.06933 :




Questions?

» QO0: What is a “Foundation Model”?

» Q1: Can we hope to train a “Foundation Model” for SciML?

» Q2: Would incorporating physical knowledge help? If so, how to do it?
» Q3: Foundations?
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Model Size Increased Exponentially in 2018-22
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Rethink the design, training, inference, and role
of data for successful application of NNs in SciML

Different than computational design for
ML/LLMs in industry

Different than computational design in HPC
and scientific simulation

Amir Gholami, Zhewei Yao, Sehoon Kim, Michael W. Mahoney, Kurt Keutzer, Al and Memory Wall, IEEE Micro, 2024. :
Kim*, S., Hooper*, C., Gholami*, A., Dong, Z., Li, X., Shen, S., Mahoney, M.W. and Keutzer, K. SqueezelLLM: Dense-and-Sparse Quantization. arXiv:2306.07629 i 28



https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Questions?

» QO0: What is a “Foundation Model”?

» Q1: Can we hope to train a “Foundation Model” for SciML?

» Q2: Would incorporating physical knowledge help? If so, how to do it?
» Q3: Foundations?

» Q4: Implementations?

> Q6: Applications?

» Q6: Looking forward?
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Example scientific challenges

Popular Past Challenges:
Learn solutions to PDEs
Learn operators new laws of physics
Learn dynamical systems

Lesson 1: Don’t solve a past problem that some well-established domain solves.*
Lesson 2: Don’t solve domain problems that are only well-define to domain expert.**

Important Future Challenges:
Extreme value forecasting/estimation
Multi-scale modeling/analysis
High-frequency inverse scattering

Goal: Focus on future challenges that are real scientific problems that cut across
domains and that play well with ML methodologies.

i *They will beat you up, even if you do better than them.
i **How ignorant can | be about your domain and still solve a problem you care about?



Foundational methods: can be useful in your vertical ...

. for science:
- Earthquake early warning: to turn off critical infrastructure

- Scientific GenAl: to uncover physically-meaningful data ground motions
- Etc.
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kilometers Y p k &
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1 "Learning Physics for Unveiling Hidden Earthquake Ground Motions via Conditional Generative Modeling," Ren, Nakata, Lacour, Naiman, Nakata, Song, Bi, Malik, Morozov, !
i Azencot, Erichson, and Mahoney, arXiv:2407.15089 :

 "WaveCastNet: An Al-enabled Wavefield Forecasting Framework for Earthquake Early Warning," Lyu, Nakata, Ren, Mahoney, Pitarka, Nakata, and Erichson, arXiv:2405.20516



SciGPT: Scalable Foundation Model for Scientific Machine Learning

Motivation: In spite of recent effort, there is no scientific foundation model
(SFM) that:

@w has been trained on a broad range of data

0 across different domains, and space and time scales,

@ togain an understanding of multiple physical processes and their interactions in a
complex scientific system.

Goal: To develop a broad-based SFM " "blueprint" that:
@ is applicable via transfer learning to multiple scientific domains and
2 provides a clear blueprint to develop a general scientific foundation model.

Longer Term: Will provide a clear path forward for more general investment:

@ forageneral scientific foundation model and
) for multiple domain-specific scientific ML models.



DEICIN

Datasets Type Spatial Extent ~ Temporal Modality Usage
or Collections (Resolution) Resolution
ERAS [22] Climate/weather data  Global ( 25 Tourly Gridded timeseries  Training
product km)
. Daymet, PRISM,  Climate/weather data  US (lkm, 4 daily, daily, Cridded timeseries  Training
+ SOIL PROPERTIES/ NARR [23] product km, 32 km) 3-hours
p— MINERALOGY GHCN [23] Climate observations  Global (point)  daily Univariate sensor  Training
Rare timeseries
(years) '\ ) GRDC[24] River flow CGlobal (point)  daily Univariate Sensor ~ Training
observations Time-series
< k FLUXNET*[25]  Land-Atmosphere Slobal (point)  daily Univariate sensor  Training
.g B energy, water flux Time-series
3 Infrequent obscrvationsv + > . P
T (weeksmanthe) MODIS [26] Remote sensing of Global (250 m) ~ daily Tmages Training
5] land surface
%5 SPECTROSCOPY, HLS [27] Remote sensing of Global (30 m)  2-3 days Images Training
. — . land surface
2 MODEL CMIP6/ESGF*[28] Long-term climate Global daily, monthly Gridded Training (1-2
g Frequent . ouTPUT simulations (O(100)km) Time-series models only)
T (hours-days) SEG Open Seismic experiments,  Local milliseconds Semi-gridded Training
o ' E A data [29] simulation, (O(10)m) Time-series
ot ! E] observation
© ] EarthScope Earthquakes Global (point) Time-Series Training
s 4 ; DMC [30]
€ . | \ Seismic experiment Global milliseconds “Time-series Training
'2 Rapid s - F observations (O(10)m)
{sw-hours) LAB EXPERIMENT  ,vneoi oGy SCEC Earthquakes Regional milliseconds Time-series Training
(WATER LEVEL) BBPlatform [31]  simulations (O(1km) )
ESS-DIVE* [32]  Observations, Pore-Global Heterogeneous Heterogeneous Training and
Molecular Lab/sample Field Watershed Regional experiments, Validation
(nm-um) (em-1m) (10 m-1 km) (1-10 km) (10-100’s km) simulations
i Energy Data Ceophysical O(10)-O(1)km  milliseconds-daily ~ Time series, Training and
Spatial Scale eXchange® [33] observations and Images Validation
simulation
Geothermal Data  Geophysical O(10)m- milliseconds-daily ~ Time-Series, Training and
Repository* [34]  observations O(1)km Images Validation
ARM Best Climate data product  Global (point)  hourly Univariate sensor  Validation
L 3 3 3 estimate*[35] ime-series
Figure 2: Example of the diverse Earth science Gl cime copsom  clobal o) Veriable e ensor Validation

water observations dependent Time-series

data collected at a range of spatial and temporal ——Ds smertedorsorved by DOE
Scales (Figure from [131]) See alSO Table 1 Table 1: Data available for model training and validation including experiments, simulations, and Figure 3: Example Of diverse Earth science data

observations across a range of spatial and temporal scales.
from Atmosphere, Land and Subsurface.




SciGPT: Scalable Foundation Model for Scientific Machine Learning, cont.

Three main challenges: that currently block the development of a SFM:

@ lack of "neural scaling” w.r.t. model/data/compute as well as spatio-temporal
scaling;

> lack of control on out-of-distribution generalization; and

@ lack of broad-based multi-modal data for training.

Approach: Adopt the main methodology that ML researchers do:
@ used to develop CV and NLP FMs,
) adapting those methods as needed to the properties of scientific data.

"Scale model and data and compute so none of them saturate, then transfer learn”



Possible SciGPT applications in X={Earth Sciences}?

Learning physics across scales & Earth
system components (atmosphere, land,
Earthquakes subsurface - B
E : Observation

Prediction of extreme events & impacts
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E.g. power law dynamics common in natural

Climate impacts on watersheds, tipping points systems
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Questions?

» QO0: What is a “Foundation Model”?

» Q1: Can we hope to train a “Foundation Model” for SciML?

» Q2: Would incorporating physical knowledge help? If so, how to do it?
» Q3: Foundations?

» Q4: Implementations?

» Q6: Applications?

> Q6: Looking forward?
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Looking forward ...

Foundation Models are infrastructure:
A foundation upon which to do stuff

Just like the computer, or iphone, or bridges, or electrical grid
All these are impressive ... until they are not

Look at history: computer science (industry) vs computational science (science)
Very similar forcing functions

Expect similar outcomes

Do we compute on the metal or with multiple layers of abstraction?
Do we fit SciML into the form factor provided by industrial LMs?

Question: How can we deliver on the promise of Scientific ML?
Give it a strong, robust, principled foundations
Rooted in both scientific principles and ML principles



